986. The Infrared Spectra and Structures of Metal Complexes of 1,4-Dioxan, 1,4-Dithian, 1,4-Thioxan, Piperazine, and 1,4-Dimethylpiperazine.

By P. J. HENDRA and D. B. POWELL.

Infrared absorption spectra have been determined for a number of complexes of certain metal chlorides with ligands mentioned in the title, and deductions have been drawn as to their structures.

A NUMBER of co-ordination complexes containing ligands of the type $C_4H_8X_2$ (X = O, S, NH, and NMe) have been prepared previously,^{1,2} but there has been comparatively little investigation of their structures. In these complexes the ligand could have either the boat or the chair configuration of the six-membered ring; however, if the ligand is chelated, it must have the boat configuration, whereas if it is attached to different metal atoms it could have other structures. In non-chelate complexes the chair form seems more probable, as it is this form which predominates, for dioxan and dithian, in the free ligand.³ Hassel and Pedersen 4 have shown from X-ray-diffraction evidence that in the complex, $PdCl_2(C_6H_{14}N_2)$, of 1,4-dimethylpiperazine the organic molecule has the boat configuration with its nitrogen atoms attached to the same palladium atom, as suggested previously from infrared evidence.²

The infrared spectrum of the 1,4-dioxan compound, $HgCl_2(C_4H_8O_2)$, has been examined in some detail by Tarte and Laurent,⁵ who suggest that this compound consists of chains of high molecular weight in which different mercury atoms are linked by dioxan molecules in the chair form. This conclusion has been confirmed by X-ray diffraction studies.⁶

If the ligands have the boat rather than the chair structure it would be expected that the spectra would contain more absorption peaks, owing to the increased number of infrared active fundamental vibrations. Ramsey 7 points out that for 1,4-dioxan, in the region 1500-750 cm.-1, 17 infrared-active fundamentals are permitted for the boat structure whilst only 11 are permitted for the chair form.

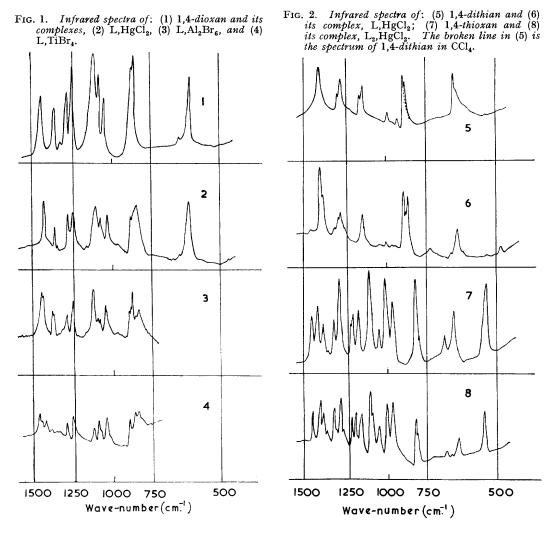
In the present work a number of complexes of this general type, containing the ligands 1,4-dioxan, 1,4-dithian, 1,4-thioxan, piperazine, and 1,4-dimethylpiperazine have been prepared, including some not previously reported. The infrared spectra of these have been examined in order to obtain evidence of the structure of the ligands. No attempt has been made here to make a detailed analysis of the spectra, but a comparison of the spectra of the free ligands with those of the various complexes gives useful information about their structures, and the results obtained are discussed here for each of these ligands.

1,4-Dioxan and 1,4-Dithian Complexes.—The infrared spectra of metal complexes of the type $M(C_4H_8O_2)$ (M = HgCl₂, CdCl₂, CuCl₂, and NiCl₂) and $M(C_4H_8S_2)$ (M = AuCl₃, CuCl₂, HgCl₂, CdCl₂, and PtCl₂) were obtained. The spectra of the various groups of complexes resemble each other and those of their respective free ligands very closely (Figs. 1 and 2). Apart from some intensity changes the only noticeable differences are the slightly lower frequencies of some absorption bands for the complexes than for the free ligand, the greatest frequency differences being less than 30 cm.⁻¹. In addition, a strong absorption peak at about 850 cm.⁻¹ appears in the dioxan complexes, probably

¹ Husemann, Annalen, 1862, **126**, 281; Juhasz and Yntema, J. Amer. Chem. Soc., 1940, **62**, 3522; Rheinboldt, Luyken, and Schmittmann, J. prakt. Chem., 1937, **149**, 30; Bouknight and Smith, J. Amer. Chem. Soc., 1939, 61, 28.

² Mann and Watson, J., 1958, 2772. ³ Hassel and Viervoll, Acta Chem. Scand., 1947, 1, 149; Malherbe and Bernstein, J. Amer. Chem. Soc., 1952, 74, 4408; Marsh, Acta Cryst., 1955, 8, 91.

⁴ Hassel and Pedersen, Proc. Chem. Soc., 1959, 394.


⁵ Tarte and Laurent, Bull. Soc. chim. France, 1957, 403.

⁶ Hassel and Hvoslef, Acta Chem. Scand., 1954, 8, 1953.

⁷ Ramsey, Proc. Roy. Soc., 1947, 190, A, 562.

due to splitting of the band at 871 cm.^{-1} for the pure ligand. Solid-phase spectra of both ligands show splitting of this absorption band (cf. Malherbe *et al.*³).

The similarity of spectra of the complexes and the free ligand has been previously observed for $HgCl_2(C_4H_8O_2)$ and interpreted as indicating that the organic molecules exist in the same configurations in the complexes and in the free ligand. Since there is good evidence that both dioxan and dithian consist of molecules in the chair configuration in both the liquid and the solid state, it is probable that the structures of the ligands in

these complexes are also of the chair type. These complexes all give an analysis $M(C_4H_8O_2)$ or $M(C_4H_8S_2)$ and, if the metal atoms have their usual co-ordination numbers, the complexes could either have a monomeric structure in which a chelate ligand occupies *cis*-positions about the metal nucleus, or a polymeric structure with chains of metal atoms linked by dioxan or dithian molecules. Since dioxan and dithian appear to have the chair configuration in these complexes, the latter type of structure is more probable.

Sheka and Karlysheva ⁸ report the existence of some complexes of aluminium halides

⁸ Sheka and Karlysheva, Zhur. obshchei Khim., 1951, 21, 833.

in which dipole-moment evidence has shown that the dioxan molecule is joined to aluminium by only one oxygen atom. It was considered that, because of the lower symmetry of the ligand molecules, the infrared spectra of these compounds might show interesting differences from those discussed above. The compounds $Al_2Br_6(C_4H_8O_2)$ and $AlCl_3(C_4H_8O_2)$ which are stated to be of this type, were prepared and their infrared spectra obtained, but it was found that the spectra of these two complexes were again similar to that of the free ligand; however, there is an additional band at about 850 cm.⁻¹, as in the other series of complexes examined, and some of the absorption bands are split into doublets. There are also some marked changes in the strengths of the bands (Fig. 1). It is clearly difficult to distinguish between these complexes and others containing dioxan in the chair form and doubly co-ordinated.

Rolsten and Sisler ⁹ report a compound $TiBr_4(C_4H_8O_2)$ and suggest, on the basis of its infrared spectrum and preliminary X-ray investigations, that it contains chelated dioxan molecules. This compound was prepared, and its infrared spectrum obtained. The absorption-band frequencies agreed closely with those published and, apart from some intensity variations, the spectrum of this compound resembles that of $Al_2Br_6(C_4H_8O_2)$. It therefore probably has the same structure, *i.e.*, the chair configuration of the sixmembered ring with one oxygen atom attached to a metal ion. This conclusion is supported by Daasch's recent work.¹⁰

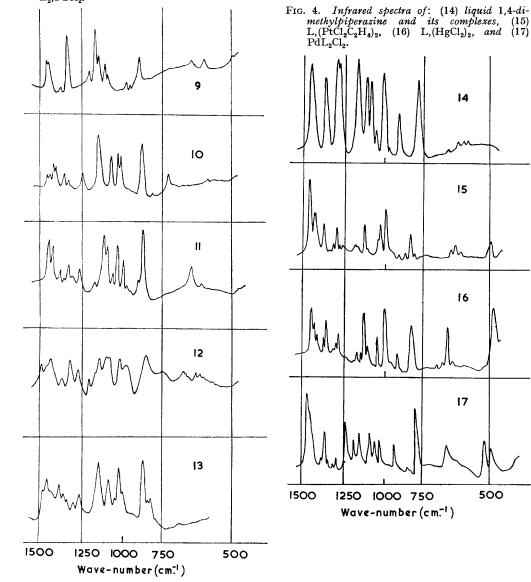
1,4-Thioxan Complexes.—Three co-ordination complexes of thioxan have been prepared having empirical formulæ HgCl₂(C₄H₈OS)₂, CuCl₂(C₄H₈OS)₂, and PtCl₂(C₄H₈OS)₂, and their spectra, together with that of the free ligand in the liquid phase, have been obtained. Again the spectra of the complexes and ligand are very similar, suggesting that the structures of the six-membered ring are the same in all cases. The formulæ of the complexes indicate that, if the metal ions have their usual co-ordination numbers, the complexes are monomeric and contain thioxan in the chair form, either sulphur or oxygen being joined to the metal atom.

No cases have been found where a metal ion forms bonds with both oxygen and sulphur so as to give a polymer. This was expected since oxygen and sulphur show marked differences in their tendencies to form bonds with metal ions.

Piperazine Complexes.—The structure of piperazine, unlike those of dioxan and dithian, has received little attention, apart from an investigation of 1,4-dichloropiperazine reported by Andersen and Hassel.¹¹ The infrared spectrum of piperazine in CCl_4 in many respects resembles those of 1,4-dithian and -dioxan, so it seems probable that it has the same structure. Two additional absorption peaks found in the region of 1100 cm.⁻¹ are probably associated with the NH group vibrations. This structure was confirmed by the preparation of a complex in which piperazine "bridges" two metal atoms. The reaction of aqueous piperazine and Zeise's salt $(K[C_2H_4PtCl_3],H_2O)$ gives a compound $(PtCl_2, C_2H_4)_2(C_4H_{10}N_2)$ (I). The *trans*-directive property of the ethylene group causes the piperazine molecule to occupy a bridging position between two platinum atoms, the nitrogen atoms being linked trans to the ethylene groups. The piperazine molecule in this case would, for steric reasons, probably have the chair configuration. This formation of a "bridge complex" is similar to the behaviour of ethylenediamine which, in spite of its normal strong tendency to form chelate complexes, gives a "bridge complex" containing ethylenediamine in the *trans*-configuration.¹² The spectrum of compound (I) was found to be very similar to that of piperazine in CCl_{4} , when allowance had been made for the absorption bands due to the ethylene groups.

The spectrum of crystalline anhydrous piperazine was very complex, and the absorption peaks tended to be broad and rounded, these effects probably being due to hydrogen

⁹ Rolsten and Sisler, J. Amer. Chem. Soc., 1957, 79, 1819.


 ¹⁰ Daasch, Spectrochim. Acta, 1959, 726.
 ¹¹ Andersen and Hassel, Acta Chem. Scand., 1949, 3, 1181.

¹² Powell and Sheppard, J., 1959, 3089.

bonding in the solid state. Two complexes of the type $M(C_4H_{10}N_2)$ ($M = CdCl_2$ and HgCl₂) were prepared. Their absorption spectra in general closely resembled those of the "bridge complex" (I) and of piperazine in solution, but in some regions were rather more complex (Fig. 3). The additional absorption bands cannot be due to N-H vibrations;

FIG. 3. Infrared spectra of: piperazine (9) in CCl_4 and (12) in the solid state; and of its complexes, (10) L, (PtCl₂C₂H₄)₂, (11) L, CdCl₂, and (13) L₂, PdCl₂.

5108

as in the complex $CdCl_2(C_4H_{10}N_2)$ conversion of NH groups into ND causes the shifting of only two peaks to lower frequency values. It is possible that the slightly more complex nature of the spectra of these two compounds is due to the formation of isomers involving axial and equatorial positions of the hydrogen atoms and metal ions about the nitrogen atoms.

500

The insoluble picrate of the complex ion $[Pd(C_4H_{10}N_2)_2]^{2+}$ has been isolated from an aqueous solution of the chloride by Mann and Watson² and, on the basis of its analysis and chemical properties, shown to contain the chelated ligand. Attempts to isolate the compound $Pd(C_4H_{10}N_2)_2Cl_2$ (II) from this aqueous solution for infrared examination gave products containing an excess of piperazine; however, a new method of preparation has been devised giving a pure product. The spectrum obtained from compound (II) shows marked differences from those of the other piperazine complexes examined and provides additional evidence that these previously considered compounds have the chair structure.

The evidence indicates that the mercury and cadmium chloride piperazine complexes have similar structures to those of dioxan and dithian, but with the additional complication that axial and equatorial co-ordination positions cause rather more absorption bands in the spectra.

1,4-Dimethylpiperazine Complexes.—The preparations of 1,4-dimethylpiperazine and the complex $PdCl_2(C_6H_{14}N_2)$ have been reported by Mann and Watson,² who give evidence from its chemical properties and molecular weight that the complex is monomeric and therefore contains chelated 1,4-dimethylpiperazine. This has been confirmed by X-ray analysis by Hassel and Pedersen.⁴ We have prepared a very stable, water-insoluble complex $(HgCl_2)_2(C_6H_{14}N_2)$, and also a "bridge complex" $(PtCl_2,C_2H_4)_2(C_6H_{14}N_2)$ (III) analogous to compound (I) for piperazine. The spectra of the "bridge complex" (III) and of the mercury-containing compound are very similar (Fig. 4), suggesting that $(HgCl_2)_2(C_6H_{14}N_2)$ has a structure in which the mercury atoms are linked by a dimethylpiperazine molecule, as in (III). The palladium complex, $PdCl_2(C_6H_{14}N_2)$, which is known to contain the chelate dimethylpiperazine ligand, has a very different and more complex spectrum, as would be expected, since many more fundamental vibrations are infraredactive in the boat form of the ligand, this structure being present in a chelate complex.

Dioxan (liq.)	$HgCl_2$ (C ₄ H ₈ O ₂)	$CdCl_2$ ($C_4H_8O_2$)	$\begin{array}{c} \mathrm{CuCl}_{2}\\ (\mathrm{C_{4}H_{8}O_{2}}) \end{array}$	${\mathop{\rm NiCl}}_2$ (C ₄ H ₈ O ₂)	$\mathrm{Al_2Br_6}_{(\mathrm{C_4H_8O_2})}$	$\begin{array}{c} \text{AlCl}_{3} \\ (\text{C}_{4}\text{H}_{8}\text{O}_{2}) \end{array}$	${ m TiBr}_4$ (C $_4{ m H}_8{ m O}_2$)
2955s 2902ms 2849s 2744w 2860w	2961m 2919ms 2862m 2857m	2994w 2954wm 2850vw 2771vw	2983m 2927ms 2860wm	3005w 2925wm 2865m 2750w	N.I.*	3025m 2969m	N.I.*
1452m 1368wm 1323vw	1441s 1374m	1430m 1373wm	1441s 1374mw	$1456 \mathrm{s}$ 1440ms 1372w $\Big\{$	1450s 1440sm 1385m 1374m	1525w 1455m 1449m 1388m 1379w	1458ms 1430m † 1382ms
1289m	1287s	1284wm	1289ms {	1299ms 1267m	1295m	1264ms	1298ms
1256vs	1256s	1254s	1256s	1256ms	1256s	1224m	1256 ms
1121vvs	1109s {	1112ms 1105s	1109s	1110vs {	1126vs 1098wm {	1170w 1157w	1121m
1081ms	1079m	1079s	1073sm	1080s	1084wm	1101s	1070s
1048m	10 34 ms	1031ms	10 3 1sm	1050ms $\left\{ ight.$	$1051s \\ 1045sh $	1059s 1051s	10 3 9s
888sh	888m	889s	885m {	913m { 888s {	899wm 885wm	902s	888m
871vs	843vs {	872 ms 845 vs	851vs	871vs {	876vs 8 31 s	857s {	829m 804m †
	669w		667 vw	682ms			
614vs	615vs	620s	612s {	629s 615s	N.I.	N.I.	N.I.
$462 \mathrm{vw}$	469vw 456vw		$452 \mathrm{vw}$	523m			

TABLE 1. Infrared spectra of dioxan and some of its complexes.

* N.I. = not investigated.

+ The spectrum of $TiBr_4(C_4H_8O_2)$ gives frequency values in good general agreement with those published by Rolsten and Sisler,⁹ but the two marked peaks have not been previously reported.

EXPERIMENTAL

The infrared spectra were obtained on a Hilger H800 double-beam spectrometer, samples being dispersed in Nujol or hexachlorobutadiene except where stated otherwise. The absorption peak frequency values (cm.⁻¹) are listed in the Tables.

1	ABLE 2. Injra	rea spectra of d	iiinian ana some (oj us compiex	es.
Dithian	$AuCl_3(C_4H_8S_2)$	$CuCl_2(C_4H_8S_2)$	$HgCl_2(C_4H_8S_2)$	$CdCl_2(C_4H_8S_2)$	$PtCl_2(C_4H_8S_2)$
2933wm					
2891m			,		2978s
2801wm	N.I.	N.I.	2972wm	2900vvw	2819ms
			2924m		
			1854w		
1408ms	1407ms	$1409 \mathrm{sm}$	1407s	1403ms	1416s
		1394sm	13 96m, sh		
	1 32 6w				
1298m	1295s	1284sm	1292m, sh, 1281ms		
1278ms	1278w	$1267 \mathrm{sm}$	1256vw	1275ms	1278ms
	1264w				1264w, 1242wm
1183m, 1152s	1155s	1153m	1152m	1161ms	1171wm, 1124wm
	10 3 1w	1136m		1034w	
997wm, 941wm	966w	1000wm	1000w	970w	992w
902vs, 888m *	888s	900ms, 886s	910s, 893m	898ms	907wm
	$742 \mathrm{w}$	718vw	885s	790vs	$764 \mathrm{wm}$
663vs	669vw	669m	666w	664m	787ms
650vw, sh	650 ms	654s	654s	$654 \mathrm{sm}$	670w
			508wm		5 36 w
477w	514m	485m	484wm		500w
470mw	474m	465 vw	471vw	490w, 482w	
456 vw		456 vw	456vw		

TABLE 2. Infrared spectra of dithian and some of its complexes.

* Although observed in a dispersion in liquid paraffin, this peak was not found in CCl₄ solution.

Thioxan 2916s 2885s	$PtCl_2(C_4H_dOS)_2$	$\mathrm{CuCl}_2(\mathrm{C_4H_8OS})_2$	${{ m HgCl}_2(C_4{ m H}_8{ m OS})_2}\over{2975{ m w}}$ 2933m
2829s	N.I.	N.I.	2843m
2725w 2669w			2893 ms
1451m	1447s	1447m	1449m
1418ms	1410s	1413s	1403ms
1387m	1379m	1385sm	1385m, 1360w
1319m	1312m	1317w, 1306w	
1289vs	1275s	1278sm, 1258wm	1278s, 1256w
1217m, sh	1211wm	1211w	1211ms
1203ms	1194ms, 1183wm	1185s	1188ms
1172s	1160ms, 1152mw	1160ms	1155ms
1105vs	1098vs	1098vs	1101vs, 1087sh
1045wm	1051s	1045 vs	1048ms
1006s	994s	997vvs	1000vs
966s	976s	963vs	963vs
826s	823m	820vvs	820s
806s			809m
690wm			
663ms		655m	647m
55 3 vs	568s	561s	56 3 s

TABLE 3. Infrared spectra of thioxan and some of its complexes.

The complexes were usually prepared by the published methods of the authors referred to in the text. The following new *compounds* were prepared as follows:

 $HgCl_2(C_4H_8OS)_2$ and $CuCl_2(C_4H_8OS)_2$ by addition of an alcoholic solution of the anhydrous metal halide to an alcoholic solution of 1,4-thioxan prepared by Swistak's method ¹³ [Found: C, 19.75; H, 3.45. $HgCl_2(C_4H_8OS)_2$ requires C, 20.0; H, 3.4. Found: C, 29.0; H, 4.85. ¹³ Swistak, *Compt. rend.*, 1955, **240**, 1544.

5110

				-	-
Piper	azine				
(solid) 2941m	(soln.) 3328vw 2944ms	$CdCl_2(C_4H_{10}N_2) \ 3202s \ 2932wm$	$HgCl_2(C_4H_{10}N_2)$ 3123s 2932w	$({ m PtCl}_2, { m C}_2{ m H}_4)_2 \ ({ m C}_4{ m H}_{10}{ m N}_2) \ { m 3174s}$	$Pd(C_4H_{10}N_2)_2Cl^2$ 3140s
2814m	20441115	2847wm	2830w	2843w	2969wm
2742m					
2269m					
2250m 1674 (rounded)			1678vw		
1479sm	1458ms		10707.0	1463w	1452s
1449s	1444ms, 1382w	1445s, 1428ms	1447m, 1418ms	1452m, 1432ms	1433s (rounded sh)
1323s	1320s	1373w, 1345vw		1421ms, 1368m	1362ms
1271sm		1326wm, 1254m	1314w, 1256w	1346w, 1250ms	1278m, 1250ms
1197w	1177		1154	1157vs	1143ms
1174sh 1161ms	1177m	1165w, 1155w	1174vw		
1101111S 1127s	1138vs	1105w, 1155w	1130vw		
1106s	1115ms	1114vs	1110m		
1080s	1076m	1097s	1072vs	1073sm	1079ms
1034vw	1056wm	1047m, 1021s	$1040 \mathrm{vw}$	1031s, 1010s	1022s, 1000wm
977m	933 w	996ms, 873vw	1017m, 1000m	882vs	882vs
839vs	852m	894w, 850vs	966vw, 890w	812 vm	848sh, 827w
742 ms			879ms, 858vs	-10	-10
66 3 mw			690wm	710m	710 vw
616w	6 33 wm	647ms	673m, 656vw	No peaks in	615vw, 512vw
603w	570wm	609wm	075111, 0507 W	KBr region	415vw
463vw	472wm 442w	000 W M	458vw	region	110V W

TABLE 4. The infrared spectra of piperazine and some of its complexes.

TABLE 5. The infrared spectra of di-N-methylpiperazine and some of its complexes.

•			• •
Dimethylpiperazine 2927s	$PdCl_{2}(C_{6}H_{14}N_{2})$ 3042w, 3006m	$(\mathrm{HgCl}_2)_2\mathrm{C_6H_{14}N_2}$	$(PtCl_2, C_2H_4)_2C_6H_{14}N_2 \ 3022mw$
2893wm 2845m 2800s	2935s, 2891m 2839w	N.I.	2983mw 2930ms
2974ms 2292wm			
1455s	1483w sh, 1472 sh		
	1452vs	1444vs	1455vs
		1427m, 1413ms	1430m, 1421m
1374 s	1376vw	1372m	1374m
	1357s	1362s	1306 w
	1337vw		
	1306vw	1298wm	1289m, 1264w
1295s, 1284s	1284wm	1284ms	1247w, 1174vw
1171s	1236s	1233w	1157vw
	1188m	$1163 \mathrm{wm}$	
1121s	1152ms	1138wm	1109ms
109 3 s	1084ms	1115vs, 1095m	
1059wm	105 3 ms	1031sm	
1017s	1025ms	98 <u>3</u> s	1014ms
919ms	935ms	905wm	980s, 896w
	851w		854w, 820ms
806s	792vvs	815s	795w
	648m		650w
		636s	637m
No absorption	520s		617w
peaks in the			516m
KBr region	497 mw	100	
		469vs	

5112 Lynton and Truter: An Accurate Determination of the

CuCl₂(C₄H₈OS)₂ requires C, 28.0; H, 4.7%]. PtCl₂(C₄H₈OS)₂ by addition of 1,4-thioxan to an aqueous solution of K₂PtCl₄ [Found: C, 20.5; H, 3.4. PtCl₂(C₄H₈OS)₂ requires C, 20.2; H, 3.4%]. (HgCl₂)₂C₆H₁₄N₂ by mixing alcoholic solutions of mercuric chloride and 1,4-dimethylpiperazine [Found: C, 11.0; H, 2.5. (HgCl₂)₂C₆H₁₄N₂ requires C, 11.0; H, 2.15%]. PdCl₂(C₄H₁₀N₂)₂ by treatment of an acetone solution of bisbenzonitrilepalladium(II) chloride with anhydrous piperazine [Found: C, 27.1; H, 5.65. PdCl₂(C₄H₁₀N₂)₂ requires C, 27.4; H, 5.75%].

Microanalyses of *compounds* (I) and (III) are as follows: Found for (I): C, 14.35; H, 2.9. (Pt₂Cl₄C₈H₁₈N₂ requires C, 14.2; H, 2.7%). Found for (III): C, 17.3; H, 3.25. (Pt₂Cl₄C₁₀H₂₂N₂ requires C, 17.0; H, 3.2%).

The microanalyses were kindly carried out by Mr. P. Wood and Mrs. D. Charles. We thank Dr. N. Sheppard for his help and encouragement, and Imperial Chemical Industries for financial assistance.

SIR JOHN CASS COLLEGE, JEWRY ST., E.C.3.

[Received, May 2nd, 1960.]